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Abstract - Bézout's Coefficients are critical mathematical 
constructs in cryptography, particularly for public key 
cryptographic applications requiring increasingly large 
keys. As software-based methods for calculating these 
coefficients approach their performance limits, 
hardware implementations present a promising 
alternative for faster and more efficient computation. 
This paper proposes a scalable 64-bit hardware 
implementation for the computation of Bėzout's 
coefficients using a previously proposed Extended 
Stein’s Algorithm Implementation which replaces the 
multiplication and division operations found in 
Extended Euclid's Algorithm with addition and binary 
shift operations. The algorithm uses a Controller and 
Datapath approach with the aim of shifting hardware 
complexity from the Datapath to the control logic, thus 
shortening the critical path and improving performance. 
The hardware implementation efficiency is evaluated, its 
advantages and limitations are discussed. The results 
demonstrate that the proposed implementation achieves 
efficient computation of Bézout’s coefficients with a 
minimum clock period of 8 ns when synthesized on a 
Basys 3 Artix-7 FPGA. The design effectively balances 
performance and resource utilization, requiring 1628 
LUTs and 535 FFs while maintaining scalability for 
larger bit sizes. This work establishes a foundation for 
future research into hardware accelerated cryptographic 
computations, particularly in applications requiring fast 
modular inverses and efficient key generation. 
 
Index Terms – Bézout's Coefficients, Binary Euclid, 
Hardware Implementation, Modular Inversion. 

INTRODUCTION 

The growing demand for secure communication systems has 
made cryptographic algorithms a cornerstone of modern 
technology. Efficient computation of mathematical 
constants, such as Bézout’s coefficients, plays a crucial role 
in areas such as RSA encryption and Elliptic Curve 
Cryptography. Public and private key pairs in asymmetric 
cryptography heavily rely on the ability to compute the 
greatest common divisor (GCD) of large integers to 
establish coprimeness, which is fundamental to key 
generation and encryption processes [1] [2]. Bézout's 
Identity is an integral cornerstone for a multitude of widely 
used mathematics algorithms. The identity states that for 

any two integers a, b there exists two coefficients Sp, Sq such 
that 𝑝 ∗ 𝑆௣ + 𝑞 ∗ 𝑆௤ = 𝑔𝑐𝑑(𝑝, 𝑞) [3]. Bézout’s coefficients 
play a crucial role in the computation of modular 
reciprocals, particularly in contexts where two integers are 
coprime, that is, their greatest common divisor equals 1. 
According to Bézout’s identity, for any pair of coprime 
integers the identity can be rearranged to show that Sp 
serves as the modular inverse of p modulo q, meaning 
𝑝ିଵ ≡  𝑆௣ 𝑚𝑜𝑑(𝑞) or 𝑝ିଵ ∗ 𝑆௣ 𝑚𝑜𝑑(𝑞) = 1. The ability to 
compute modular inverses is essential in many 
cryptographic algorithms, including RSA and Elliptic Curve 
Cryptography (ECC), where secure key generation in RSA, 
and point multiplication in ECC depend on the modular 
inverse. As a result, Bézout’s coefficients provide not only a 
theoretical foundation for these calculations but also a 
practical method for ensuring efficient and reliable 
cryptographic computations [4].  

Algorithms for calculating Bézout's Coefficients 
trace the steps taken during the GCD computation and 
solving for how each intermediate remainder can be written 
in terms of p and q, thus are extensions of existing GCD 
algorithms. However, as the processing power of computers 
has increased, the need for larger keys, more resilient to 
brute force attacks, has grown with the desired key size 
reaching thousands of bits. Traditional software-based 
approaches to computing Bézout’s coefficients are 
computationally expensive for large integers, limiting their 
scalability in cryptographic applications. To address this, 
hardware implementations have emerged as a promising 
alternative, but existing designs often trade off efficiency for 
complexity with the goal of achieving maximum 
performance [5]. While these approaches provide vastly 
superior performance relative to software implementations, 
the large areas and power consumption required could limit 
their applicability. There exists a space between these two 
extremes where the performance benefits of digital 
hardware can be leveraged while providing a more efficient 
implementation. 

In this paper, we propose a novel hardware 
implementation of an Extended Stein’s Algorithm (ESA) for 
the efficient computation of Bézout’s coefficients. Although 
Stein’s Algorithm necessitates more iterations than Euclid’s 
Algorithm, its reliance on binary shifts, addition, and 
swapping instead of division and multiplication enables 
significant speedup in hardware. Our hardware further 
optimized the design by eliminating the need for the 



hardware swap, instead utilizing register pointers to the 
register file in the controller. By replacing the complex 
multiplication and division operations in Euclid’s algorithm 
with binary shifts [6], our design achieves improved 
performance and reduces hardware complexity. The 
proposed hardware is designed for applications requiring 
fast modular inverse computation and efficient handling of 
large cryptographic keys. This work focuses on optimizing 
hardware performance and analyzing trade-offs in 
complexity and execution speed. Alongside proving the 
design’s scalability and optimization for cryptographic 
applications that return the GCD and Bézout’s coefficients. 
The split controller and datapath approach allow the 
controller to remain the same regardless of bit size. 
Additionally, the performance and efficiency are discussed. 

The remainder of the paper is organized as follows; 
Section II focuses on the intricacies of the Extended Stein’s 
Algorithm with the adaptations required for hardware in 
section III. The hardware description and design review are 
found in Section IV. Section V focuses on implemented 
FSM and controller logic with simulations results in Section 
VI. Section VII highlights potential optimizations and 
improvements with concluding remarks in Section VIII. 

RELATED WORK 

There are several algorithms to compute the GCD of two 
numbers one of the most prominent, Euclid’s Algorithm, is 
favored for requiring fewer iterations than other algorithms 
Euclid’s algorithm takes an average of ~0.58𝑙𝑔(𝑁) 
iterations at scale with a maximum of ~1.44𝑙𝑔(𝑁). While 
beneficial for minimizing the total number of iterations, the 
multiple multiplications/divisions per iteration are 
challenging for traditional binary computers to perform. The 
Binary GCD algorithm, also known as Stein's Algorithm, 
was developed to eliminate the need for divisions at the 
expense of requiring more iterations on average, requiring 
an average of ~0.70𝑙𝑔(𝑁) iterations with the same 
maximum as Euclid's [7]. As a result of the complexity of 
binary division, it is beneficial for computers to utilize 
Stein’s Algorithms as the decrease in iteration complexity 
and execution time outweighs the increase in the total 
number of iterations. 

The Extended Euclidean Algorithm (EEA) is a 
well-known algorithm whose inner workings will not be 
discussed at length. The version of an Extended Stein's 
Algorithm (ESA) utilized to design the proposed hardware 
implements the algorithm in [8]. The algorithm utilizes a 
top-down approach like EEA where the divisors p and q 
with the constants Sp, Sq to maintain the invariant 𝑝 ∗ Sp +
𝑞 ∗ Sq = 𝑔𝑐𝑑 (𝑝, 𝑞). Due to the need to swap p and q to 
ensure q > p, the algorithm introduces two additional 
coefficients associated with q, tp and tq. The algorithm’s 
pseudocode is shown below. 

The algorithm begins by handling base cases where 
either input is zero. If p = 0, the result is (q, 0, 1), and if q = 
0, the result is (p,1,0). Otherwise, the algorithm proceeds by 
removing common factors of two from both numbers, 

reducing them while tracking the number of shifts applied. 
Once the algorithm establishes that both p and q are 
coprime, the algorithm initializes auxiliary variables to track 
Bézout’s coefficients. These variables, p0 and q0, store the 
original values of p and q, while Sp, Sq, tp, and tq are 
initialized to represent the coefficients associated with each 
value. The next stage of the algorithm consists of iteratively 
reducing p and q while maintaining the relationships 
necessary to compute Bézout’s Coefficients.  

 
Algorithm 1. Extended Stein’s Algorithm [8] 
Inputs: 

 p of length n with sign bit Sp 
 q of length m with sign bit Sq 

Outputs: 
 gcd(p, q) of length max(n, m) 
 Bézout’s coefficients x and y 

1:  Initialize K = 0 
2:  If p = 0, return (q, 0, 1) 
3:  If q = 0, return (p, 1, 0) 
4:  While p and q are even: 
5:      p = p / 2 
6:      q = q / 2 
7:      K = K + 1 
8:  Initialize p0 = p, q0 = q, Sp = 1, Sq = 0, tp = 0, tq = 1 
9:  While p is even: 
10:    If Sp or Sq is odd:  
11:        Sp = Sp – q0 

12:        Sq = Sq + p0 

13:    p = p / 2 
14:    Sp = Sp / 2 
15:    Sq = Sq / 2 
16: While q is not zero: 
17:    While q is even: 
18:        If tp or tq is odd: 
19:            tp = tp – q0 

20:            tq = tq + p0 

21:        q = q / 2 
22:        tp = tp / 2 
23:        tq = tq / 2 
24:    If p is greater than q: 
25:        Swap p and q 
26:        Swap Sp and tp 
27:        Swap Sq and tq 
28:    q = q - p 
29:    tp = tp - Sp 
30:    tq = tq - Sq 
31: Compute final output: gcd = p × 2K  
32: Return gcd, Sp, Sq 

 
The first while loop eliminates factors of two from 

p. Since division by two is equivalent to a right shift, it is 
computationally efficient, but adjustments must be made 
when the corresponding coefficients Sp and Sq are odd. To 
maintain integer arithmetic, the algorithm subtracts q0 from 
Sp and adds p0 to Sq before performing the shift operation. 
This ensures that the coefficients remain valid while 



maintaining the invariant. A similar process follows for q, 
but this reduction occurs inside the main loop that performs 
the core GCD computation. Within this loop, when q is 
even, the corresponding coefficient values are adjusted in 
the same manner as for p. Once q is no longer even, the 
algorithm proceeds to the subtraction step, ensuring that p 
always holds the smaller value. If p > q, a swap operation is 
performed on p and q as well as on their associated 
coefficients. This guarantees that the larger value is always 
reduced by the smaller one, maintaining the invariant and 
ensuring the correctness of the computation. The loop 
continues until q = 0, at which point p holds the final GCD. 
Since the algorithm previously removed common factors of 
two, the result must be multiplied by 2K to restore these 
factors. The algorithm then returns the computed GCD 
along with the Bézout’s Coefficients, which satisfy 𝑝 ∗ Sp +
𝑞 ∗ Sq = 𝑔𝑐𝑑 (𝑝, 𝑞). 

This extended version of Stein’s Algorithm 
maintains the computational efficiency of the binary GCD 
method while incorporating the ability to compute Bézout’s 
coefficients without requiring division operations. The 
avoidance of explicit division makes this method well-
suited for hardware implementations, where division is 
costly and shift-based operations are preferable. The 
structure of the algorithm lends itself to implementation in 
digital hardware for cryptographic applications. 

ADAPTATION TO DIGITAL HARDWARE 

 The goal of this implementation was to create a 
faithful adaptation of the original Extended Stein’s 
Algorithm, optimizing and adapting where possible. A key 
inefficiency in implementations of the Extended Stein’s 
Algorithm is the need for frequent variable swaps when 
ensuring that p always holds the smaller value. While 
software implementations can handle these swaps with 
minimal overhead, hardware implementations face 
additional complexity, as swapping requires additional 
control logic and its own dedicated step in a hardware state 
machine design, increasing resource utilization and 
execution time. To address this, an architecture that 
eliminates the need for explicit swaps by restructuring the 
algorithm’s data flow. 

Instead of performing conditional swaps, the 
proposed approach will employ selective assignment 
operations utilizing control signals to maintain the correct 
relationships between p and q without requiring explicit 
exchange operations. By dynamically adjusting which 
variables participate in subtraction, shift and coefficient 
updates, the design can ensure that the larger value is always 
reduced without reordering registers. This not only 
simplifies control logic but also improves computational 
efficiency by reducing cycle counts associated with 
conditional branching and temporary storage operations. By 
removing explicit swaps, the architecture can achieve a 

more streamlined and efficient execution while preserving 
the correctness of the Extended Stein’s Algorithm. To 
accommodate these changes the p and q values are 
abstracted to X, and Y, along with the associated Xp, Xq, Yp, 
Yq allowing for a structured representation that eliminates 
the need for explicit swaps while preserving correctness. 
Since the aim is to remove the hardware swap the 
relationship between p and q must be tracked in the control 
logic.  
An additional design decision is that our modified algorithm 
operates under the assumption that an external hardware 
check is in place to guarantee that neither input is zero 
before execution begins. This assumption simplifies the 
design by eliminating the need for internal zero checks, 
allowing the hardware to focus solely on performing the 
core computations of the extended Stein’s binary GCD 
algorithm. By offloading this responsibility to an external 
pre-processing unit, we reduce logic overhead and 
streamline the control flow, ensuring efficient execution 
without unnecessary conditional branches. However, it is 
crucial that the system integrating this design enforces this 
requirement, as failure to do so could lead to undefined 
behavior or incorrect results. 

PROPOSED HARDWARE 

The proposed Extended Stein’s hardware (Figure 1) takes 
two 64-bit inputs, INPUT1 and INPUT 2, and returns three 
64-bit outputs, GCD, COEFFICIENT1 , and 
COEFFICENT2 which satisfies the Bézout’s invariant 
𝐼𝑁𝑃𝑈𝑇1 ∗ 𝐶𝑂𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝑇1 + 𝐼𝑁𝑃𝑈𝑇2 ∗
𝐶𝑂𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝑇2 = 𝐺𝐶𝐷. It is controlled by an external 
clock and enable signal. The Datapath implementation, Fig. 
3, utilizes a register file combined with hardware arithmetic 
circuits to compute the necessary values at each stage. The 
controller operates the hardware using the following signals: 

 Load-Select 
 Reset-Reg 
 Done (2-bit) 
 X-Check-Ahead 
 Y-Check-Ahead 
 Reg-Read (33-bit) 
 Reg-Write (24-bit) 
 Reg-Write-En 

 
The core of the Datapath is the specialized register file. 

X, Xp, Xq, X0, Y, Yp, Yq, Y0 are stored. The register file 
contains 11 reads controlled by a 33-bit signal, Reg-Read, 
from the controller. There are 10 writes, 8 addressable, 2 
fixed. A 24-bit signal, Reg-Write, sets the write destination. 
Write 8 and 9 are connected to the X/Y subtractors and can 
only write to the respective registers. All writes are 
controlled by the 10-bit Reg-Write-En signal.  



The Datapath must be carefully designed such that it 
provides all necessary information for the controller before 
the end of the current clock cycle such that the controller 
can determine the next step. The hardware utilizes 3 right 
shifts, 2 left shifts, 1 adder, and 4 subtractors of which 2 are 
dedicated to X minus Y and vice versa operations. The 
control signals needed by the controller are included where 
appropriate. The X/Y-Check-Ahead values are set high 
when the controller their respective SHIFT state to allow the 
controller to know whether the resultant X or Y value is 
larger than its counterpart. Lastly, the done signal controls 
which GCD/Coefficients are returned by the hardware. 

FINITE STATE MACHINE IMPLEMENTATION 

The hardware design follows a structured Controller and 
Datapath architecture, where the Controller manages the 
operation flow by implementing a Moore finite state 
machine (FSM). This FSM orchestrates the sequence of 
operations, with each state corresponding to a specific task 
in the design process. The states include: 

 LOAD 
 SHRINK 
 ADJUST X 
 SHIFT X 
 REDUCE X 
 ADJUST Y 
 SHIFT Y 
 REDUCE Y 
 INFLATE 
 DONE X 
 DONE Y 

 
In the context of the hardware implementation of 

Stein's binary GCD algorithm, focusing on the core of the 
state machine and examining the relationship between the 
states ADJUST X, SHIFT X, and REDUCE X is crucial for 
understanding how the algorithm progresses. These three 
states directly influence the manipulation of the X value, 
which is one of the primary operands in the GCD 
computation. Fig. 2. demonstrates the relationship between 
the three states. 

 
Fig. 2. Finite State Machine Core 

 
Each step fulfills a core component of the original 

Extended Stein’s Algorithm. ADJUST X modifies the Xp 
and Xq values by the operand by the original Y0 and X0 
values, thus ensuring that both are even. This ensures that 
when SHIFT X divides all values by 2 via an arithmetic 
right shift to preserve sign, all three are even. However, this 
approach introduces an additional iteration compared to the 
original algorithm as the software can handle the adjustment 
within the shift iteration. Once X is no longer even the 

Fig. 1. Hardware Datapath 



reduce state subtracts Y from X, as both are negative the 
result is Y is even. This FSM is paired with a matching one 
for handling Y, Fig. 3 above.  

A key breakthrough in design of the hardware was the 
realization that the only time the algorithm needs to 
transition from working on X to Y and vice versa is when a 
shift operation occurs, as it is the only time in the original 
algorithm where P could become larger than Q is when Q is 
divided by 2. In the context of our implementation the only 
jump from the “X” to “Y” side of the hardware occurs when 
going from a Shift to a Reduce State. 

A key aspect of the design is the necessity for the next 
state to be determined before the end of each clock cycle, 
ensuring that the FSM can seamlessly transition between 
states without causing delays or errors. Eliminating the need 
for any additional states Minimizing the already increased 
iterations of Stein’s algorithm wherever possible is critical 
to maintaining the algorithms’ performance. Thus, the 
algorithm should be able to compute the next step before the 
end of the current clock cycle. The controller’s inputs are as 
follows: 

 CLK: Clock signal for the controller. 
 Enable: Enables the state machine to process states 

on the rising edge of the clock. 
 XY-sign: Input signal indicating the sign of the X 

minus Y resultant value. 
 YX-sign: Input signal indicating the sign of the Y 

minus X resultant value. 
 RS1-obit: Input signal for the RightShift1 resultant 

odd bit 
 RS2-obit: Input signal for the RightShift1 resultant 

odd bit 
 RS3-obit: Input signal for the RightShift1 resultant 

odd bit 
 Sub1-obit: Input signal indicating the first 

subtraction operations odd bit. 
 Sub2-obit: Input signal indicating the second 

subtraction operation odd bit 
 Reg-obits: 6-bit input vector (5-0) representing 

register odd bits used to track X, Y, and their 
coefficients ordered (Y, Yp, Yq, X, Xp, Xq). 

 
The LOAD state requires the controller to determine if 

it should jump straight to DONE, which occurs when both 
numbers are equal, whether to SHRINK because both X and 
Y are even or determine where in the core FSM it should 
continue from. Load is returned to upon enable being set 
low. The SHRINK state also must determine where in the 
core FSM to jump to whenever X and Y are both no longer 
even. SHRINK also highlights the controller’s internal logic 
needed to track the number of shift values (K). The 
maximum value of K is equal to the unsigned bit size 
required to store the N-bit size of the hardware, and thus 
𝐾ௌ௜௭௘ =  logଶ(𝑁). Since the selected implementation for this 
publication is 64 bits, 𝐾ௌ௜௭௘ =  logଶ(64) = 6-bits. When the 
state is SHRINK K is incremented and decremented when 
the state is INFLATE. The controller therefore maintains a 
6-bit register, adder, and subtractor to perform these 
calculations. 

The Controller knows the GCD is complete when both 
XY-Sign and YX-Sign are zero in a REDUCE state, 
represented in the FSM as “Complete”. This mirrors the 
original algorithm checking if Q = 0 after reducing Q by P. 
If K > 0, The controller shifts X and Y by 2 utilizing left 
shifts to restore the GCD. Once K = 0, the hardware 
proceeds to either of the Done states which dictate whether 
X, Xp, Xq or Y, Yp, Yq are the resultant outputs. 

Fig. 3. Finite State Machine 



SIMULATION RESULTS 

The hardware implementation fulfills the needs of the 
described Extended Steins’s FSM. Our hardware was 
described in Very High-Speed Integrated Circuit Hardware 
Description Language [9] and implemented on a Basys 3 
Artix-7 Field Programmable Gate Array (FPGA). The 
synthesized hardware requires 1628 Look Up Tables and 
535 Flip Flops. Our implementation was wrapped in a 192-
bit shift registers to meet the I/O limitations of the FPGA 
device and the resultant minimum clock period was 8ns. 
Below Table 1 shows a running example of the 
implemented FSM with an initial p and q of 10 and 12 
respectively and Fig. 4 demonstrates the resulting waveform 
from the hardware simulation. Each iteration of algorithm in 
the table directly corresponds with a matching clock on the 
waveform. The hardware beings with a shrink to ensure the 
values are coprime, mirrored with an inflate to ensure the 
final GCD is correct. The resulting waveform demonstrates 
the correct execution and coefficients of -1 and 1 and GCD 
of 2. 
 

TABLE 1. 
HARDWARE EXAMPLE 

 
 

 

 
Fig. 4. Waveform Diagram 

 
Several possibilities for improvement could allow this 

hardware design to be further optimized. The current 
implementation uses simple ripple carry adders. Substituting 
these with faster alternatives, including carry look-ahead 
adders, would improve hardware performance. 
Alternatively, it could be possible to substitute the two X/Y 
subtractors for a single subtractor that performs the relevant 
operation with necessary. The key limitation is devising a 
more efficient manner for determining when the hardware is 
done as it relies on the sign bit for both subtractors.  

CONCLUSION 

This work presents an easily 64-bit hardware 
implementation of the Extended Stein’s Algorithm that 

scales to large bit sizes without affecting control logic or 
overall hardware architecture. It proves effective for 
computing Bézout’s coefficients, leveraging binary shift 
operations to improve efficiency over traditional software-
based approaches. By shifting computational complexity 
from the Datapath to the control logic, the proposed design 
optimizes performance while maintaining a scalable and 
practical architecture for cryptographic applications. The 
results demonstrate that although Stein’s Algorithm requires 
more iterations than Euclid’s Algorithm, its reduced cycle 
time enables overall performance gains, particularly in 
hardware implementations where division and 
multiplication are costly. Improvements can also be made 
for applications where the GCD is unnecessary such as RSA 
where the GCD is odd, and the input numbers are large 
primes. This would allow for the elimination of the 
SHRINK and INFLATE states and several components 
from the Datapath. 

Overall, this work demonstrates the feasibility of using 
hardware acceleration for Bézout’s coefficient computation, 
balancing efficiency and resource utilization. By leveraging 
the Extended Stein’s Algorithm, the implementation 
mitigates the performance limitations of traditional 
software-based approaches while maintaining a manageable 
hardware footprint. This study serves as a foundation for 
future research into optimizing GCD-based computations in 
cryptographic systems, reinforcing the role of specialized 
hardware in secure and efficient key management. 
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