A High-Performance Hardware Design for
Computing Bézout’s Coefficients Using Extended
Stein’s Algorithm

Ryan Massie and Firas Hassan
Ohio Northern University, r-massie, f-hassan@onu.edu

Abstract - Bézout's Coefficients are critical mathematical
constructs in cryptography, particularly for public key
cryptographic applications requiring increasingly large
keys. As software-based methods for calculating these
coefficients approach their performance limits,
hardware implementations present a promising
alternative for faster and more efficient computation.
This paper proposes a scalable 64-bit hardware
implementation for the computation of Bézout's
coefficients using a previously proposed Extended
Stein’s Algorithm Implementation which replaces the
multiplication and division operations found in
Extended Euclid's Algorithm with addition and binary
shift operations. The algorithm uses a Controller and
Datapath approach with the aim of shifting hardware
complexity from the Datapath to the control logic, thus
shortening the critical path and improving performance.
The hardware implementation efficiency is evaluated, its
advantages and limitations are discussed. The results
demonstrate that the proposed implementation achieves
efficient computation of Bézout’s coefficients with a
minimum clock period of 8 ns when synthesized on a
Basys 3 Artix-7 FPGA. The design effectively balances
performance and resource utilization, requiring 1628
LUTs and 535 FFs while maintaining scalability for
larger bit sizes. This work establishes a foundation for
future research into hardware accelerated cryptographic
computations, particularly in applications requiring fast
modular inverses and efficient key generation.

Index Terms — Bézout's Coefficients, Binary Euclid,
Hardware Implementation, Modular Inversion.

INTRODUCTION

The growing demand for secure communication systems has
made cryptographic algorithms a cornerstone of modern
technology. Efficient computation of mathematical
constants, such as Bézout’s coefficients, plays a crucial role
in areas such as RSA encryption and Elliptic Curve
Cryptography. Public and private key pairs in asymmetric
cryptography heavily rely on the ability to compute the
greatest common divisor (GCD) of large integers to
establish coprimeness, which is fundamental to key
generation and encryption processes [1] [2]. Bézout's
Identity is an integral cornerstone for a multitude of widely
used mathematics algorithms. The identity states that for

any two integers a, b there exists two coefficients S;, Sqsuch
that p * S, + q * S = ged(p, q) [3]. Bézout’s coefficients
play a crucial role in the computation of modular
reciprocals, particularly in contexts where two integers are
coprime, that is, their greatest common divisor equals 1.
According to Bézout’s identity, for any pair of coprime
integers the identity can be rearranged to show that S,
serves as the modular inverse of p modulo g, meaning
p~t = S, mod(q) or p~* * S, mod(q) = 1. The ability to
compute modular inverses is essential in many
cryptographic algorithms, including RSA and Elliptic Curve
Cryptography (ECC), where secure key generation in RSA,
and point multiplication in ECC depend on the modular
inverse. As a result, Bézout’s coefficients provide not only a
theoretical foundation for these calculations but also a
practical method for ensuring efficient and reliable
cryptographic computations [4].

Algorithms for calculating Bézout's Coefficients
trace the steps taken during the GCD computation and
solving for how each intermediate remainder can be written
in terms of p and q, thus are extensions of existing GCD
algorithms. However, as the processing power of computers
has increased, the need for larger keys, more resilient to
brute force attacks, has grown with the desired key size
reaching thousands of bits. Traditional software-based
approaches to computing Bézout’s coefficients are
computationally expensive for large integers, limiting their
scalability in cryptographic applications. To address this,
hardware implementations have emerged as a promising
alternative, but existing designs often trade off efficiency for
complexity with the goal of achieving maximum
performance [5]. While these approaches provide vastly
superior performance relative to software implementations,
the large areas and power consumption required could limit
their applicability. There exists a space between these two
extremes where the performance benefits of digital
hardware can be leveraged while providing a more efficient
implementation.

In this paper, we propose a novel hardware
implementation of an Extended Stein’s Algorithm (ESA) for
the efficient computation of Bézout’s coefficients. Although
Stein’s Algorithm necessitates more iterations than Euclid’s
Algorithm, its reliance on binary shifts, addition, and
swapping instead of division and multiplication enables
significant speedup in hardware. Our hardware further
optimized the design by eliminating the need for the

hardware swap, instead utilizing register pointers to the
register file in the controller. By replacing the complex
multiplication and division operations in Euclid’s algorithm
with binary shifts [6], our design achieves improved
performance and reduces hardware complexity. The
proposed hardware is designed for applications requiring
fast modular inverse computation and efficient handling of
large cryptographic keys. This work focuses on optimizing
hardware performance and analyzing trade-offs in
complexity and execution speed. Alongside proving the
design’s scalability and optimization for cryptographic
applications that return the GCD and Bézout’s coefficients.
The split controller and datapath approach allow the
controller to remain the same regardless of bit size.
Additionally, the performance and efficiency are discussed.
The remainder of the paper is organized as follows;
Section II focuses on the intricacies of the Extended Stein’s
Algorithm with the adaptations required for hardware in
section III. The hardware description and design review are
found in Section IV. Section V focuses on implemented
FSM and controller logic with simulations results in Section
VI. Section VII highlights potential optimizations and
improvements with concluding remarks in Section VIII.

RELATED WORK

There are several algorithms to compute the GCD of two
numbers one of the most prominent, Euclid’s Algorithm, is
favored for requiring fewer iterations than other algorithms
Euclid’s algorithm takes an average of ~0.58lg(N)
iterations at scale with a maximum of ~1.44lg(N). While
beneficial for minimizing the total number of iterations, the
multiple multiplications/divisions per iteration are
challenging for traditional binary computers to perform. The
Binary GCD algorithm, also known as Stein's Algorithm,
was developed to eliminate the need for divisions at the
expense of requiring more iterations on average, requiring
an average of ~0.70lg(N) iterations with the same
maximum as Euclid's [7]. As a result of the complexity of
binary division, it is beneficial for computers to utilize
Stein’s Algorithms as the decrease in iteration complexity
and execution time outweighs the increase in the total
number of iterations.

The Extended Euclidean Algorithm (EEA) is a
well-known algorithm whose inner workings will not be
discussed at length. The version of an Extended Stein's
Algorithm (ESA) utilized to design the proposed hardware
implements the algorithm in [8]. The algorithm utilizes a
top-down approach like EEA where the divisors p and q
with the constants S,, Sq to maintain the invariant p x Sp +
q *Sq = gcd (p,q). Due to the need to swap p and q to
ensure q > p, the algorithm introduces two additional
coefficients associated with ¢, t, and t, The algorithm’s
pseudocode is shown below.

The algorithm begins by handling base cases where
either input is zero. If p = 0, the result is (q, 0, 1), and if q =
0, the result is (p,1,0). Otherwise, the algorithm proceeds by
removing common factors of two from both numbers,

reducing them while tracking the number of shifts applied.
Once the algorithm establishes that both p and q are
coprime, the algorithm initializes auxiliary variables to track
Bézout’s coefficients. These variables, po and qo, store the
original values of p and q, while S,, Sq, tp, and tq are
initialized to represent the coefficients associated with each
value. The next stage of the algorithm consists of iteratively
reducing p and q while maintaining the relationships
necessary to compute Bézout’s Coefficients.

Algorithm 1. Extended Stein’s Algorithm [8]

Inputs:
e p of length n with sign bit S,
e g of length m with sign bit Sq
Outputs:
e gcd(p, q) of length max(n, m)
e Bézout’s coefficients x and y

. Initialize po=p,qo=q, Sp=1,S4=0,t, =0, t;=1
: While p is even:

10: If S or Sqis odd:

11: Sp: Sp—qo

12: Sq=Sq+ po

1: Initialize K=0

2: If p=0, return (q, 0, 1)
3: If q =0, return (p, 1, 0)
4: While p and q are even:
5. p=p/2

6: q=q/2

7: K=K+1

8

9

13: p=p/2
14: Sp,=S,/2
15: Sq=Sq/2

16: While q is not zero:
17: While q is even:
18: If t, or tq is odd:

19: tb=t—qo
20: tq=1tq+ po
21: q=q/2

22: t=1t,/2

23: tg=1tq/2

24: If p is greater than q:
25: Swap p and q

26: Swap S; and t,
27: Swap Sq and tq

28: q=q-p
29: t,=1t-Sp
30 tg=1q-Sq

31: Compute final output: gcd = p x 2K
32: Return ged, Sy, Sq

The first while loop eliminates factors of two from
p. Since division by two is equivalent to a right shift, it is
computationally efficient, but adjustments must be made
when the corresponding coefficients S, and Sq are odd. To
maintain integer arithmetic, the algorithm subtracts qo from
Sp and adds po to Sq before performing the shift operation.
This ensures that the coefficients remain valid while

maintaining the invariant. A similar process follows for q,
but this reduction occurs inside the main loop that performs
the core GCD computation. Within this loop, when q is
even, the corresponding coefficient values are adjusted in
the same manner as for p. Once q is no longer even, the
algorithm proceeds to the subtraction step, ensuring that p
always holds the smaller value. If p > q, a swap operation is
performed on p and q as well as on their associated
coefficients. This guarantees that the larger value is always
reduced by the smaller one, maintaining the invariant and
ensuring the correctness of the computation. The loop
continues until q = 0, at which point p holds the final GCD.
Since the algorithm previously removed common factors of
two, the result must be multiplied by 2¥ to restore these
factors. The algorithm then returns the computed GCD
along with the Bézout’s Coefficients, which satisfy p * Sp +
q*Sq=gcd (p,q).

This extended version of Stein’s Algorithm
maintains the computational efficiency of the binary GCD
method while incorporating the ability to compute Bézout’s
coefficients without requiring division operations. The
avoidance of explicit division makes this method well-
suited for hardware implementations, where division is
costly and shift-based operations are preferable. The
structure of the algorithm lends itself to implementation in
digital hardware for cryptographic applications.

ADAPTATION TO DIGITAL HARDWARE

The goal of this implementation was to create a
faithful adaptation of the original Extended Stein’s
Algorithm, optimizing and adapting where possible. A key
inefficiency in implementations of the Extended Stein’s
Algorithm is the need for frequent variable swaps when
ensuring that p always holds the smaller value. While
software implementations can handle these swaps with
minimal overhead, hardware implementations face
additional complexity, as swapping requires additional
control logic and its own dedicated step in a hardware state
machine design, increasing resource utilization and
execution time. To address this, an architecture that
eliminates the need for explicit swaps by restructuring the
algorithm’s data flow.

Instead of performing conditional swaps, the
proposed approach will employ selective assignment
operations utilizing control signals to maintain the correct
relationships between p and q without requiring explicit
exchange operations. By dynamically adjusting which
variables participate in subtraction, shift and coefficient
updates, the design can ensure that the larger value is always
reduced without reordering registers. This not only
simplifies control logic but also improves computational
efficiency by reducing cycle counts associated with
conditional branching and temporary storage operations. By
removing explicit swaps, the architecture can achieve a

more streamlined and efficient execution while preserving
the correctness of the Extended Stein’s Algorithm. To
accommodate these changes the p and q values are
abstracted to X, and Y, along with the associated X, Xg, Yp,
Y, allowing for a structured representation that eliminates
the need for explicit swaps while preserving correctness.
Since the aim is to remove the hardware swap the
relationship between p and q must be tracked in the control
logic.

An additional design decision is that our modified algorithm
operates under the assumption that an external hardware
check is in place to guarantee that neither input is zero
before execution begins. This assumption simplifies the
design by eliminating the need for internal zero checks,
allowing the hardware to focus solely on performing the
core computations of the extended Stein’s binary GCD
algorithm. By offloading this responsibility to an external
pre-processing unit, we reduce logic overhead and
streamline the control flow, ensuring efficient execution
without unnecessary conditional branches. However, it is
crucial that the system integrating this design enforces this
requirement, as failure to do so could lead to undefined
behavior or incorrect results.

PROPOSED HARDWARE

The proposed Extended Stein’s hardware (Figure 1) takes

two 64-bit inputs, INPUT1 and INPUT 2, and returns three

64-bit outputs, GCD, COEFFICIENTI , and

COEFFICENT2 which satisfies the Bézout’s invariant

INPUT1 % COEFFICIENT1 + INPUT?2 *

COEFFICIENT2 = GCD. 1t is controlled by an external

clock and enable signal. The Datapath implementation, Fig.

3, utilizes a register file combined with hardware arithmetic

circuits to compute the necessary values at each stage. The

controller operates the hardware using the following signals:
e Load-Select

Reset-Reg

Done (2-bit)

X-Check-Ahead

Y-Check-Ahead

Reg-Read (33-bit)

Reg-Write (24-bit)

Reg-Write-En

The core of the Datapath is the specialized register file.
X, Xp, Xg» X0, Y, Yp, Yg, Yo are stored. The register file
contains 11 reads controlled by a 33-bit signal, Reg-Read,
from the controller. There are 10 writes, 8 addressable, 2
fixed. A 24-bit signal, Reg-Write, sets the write destination.
Write 8 and 9 are connected to the X/Y subtractors and can
only write to the respective registers. All writes are
controlled by the 10-bit Reg-Write-En signal.

9 Write_En (9:0)

"‘ Controller

g 53 il
¥ 3 ¥ g 3% — s
ENABLE—{ e & L g : 1] 5588827 z
ax 8 H i D xx28%34 3
1
]
¥ £ £ 3
LR g 2
s g ;ﬁ
El— x * LD—COEF[CIENT)-)
Yq
» \—D—comcusnm >

~INPUT_1.

wrte 0

=INPUT_2 7
T

wrte 1

=

Write 2
—
Wee3 Register File '
" -

Wite &

wiite 7

wine 9

At1-Resd
A12-Read

StiRess

S12-Read Sub 1

S2t-Resd

S21-Resd "I

e

Y-X

Fig. 1. Hardware Datapath

The Datapath must be carefully designed such that it
provides all necessary information for the controller before
the end of the current clock cycle such that the controller
can determine the next step. The hardware utilizes 3 right
shifts, 2 left shifts, 1 adder, and 4 subtractors of which 2 are
dedicated to X minus Y and vice versa operations. The
control signals needed by the controller are included where
appropriate. The X/Y-Check-Ahead values are set high
when the controller their respective SHIFT state to allow the
controller to know whether the resultant X or Y value is
larger than its counterpart. Lastly, the done signal controls
which GCD/Coefficients are returned by the hardware.

FINITE STATE MACHINE IMPLEMENTATION

The hardware design follows a structured Controller and
Datapath architecture, where the Controller manages the
operation flow by implementing a Moore finite state
machine (FSM). This FSM orchestrates the sequence of
operations, with each state corresponding to a specific task
in the design process. The states include:

e LOAD
SHRINK
ADJUST X
SHIFT X
REDUCE X
ADJUSTY
SHIFT Y
REDUCE Y
INFLATE
DONE X
DONE Y

In the context of the hardware implementation of
Stein's binary GCD algorithm, focusing on the core of the
state machine and examining the relationship between the
states ADJUST X, SHIFT X, and REDUCE X is crucial for
understanding how the algorithm progresses. These three
states directly influence the manipulation of the X value,
which is one of the primary operands in the GCD
computation. Fig. 2. demonstrates the relationship between
the three states.

X is even, Xp or Xg are odd

X, Xp, Xq is even

X is even,
Xp or Xg
are odd

X, Xp, Xq is even

Reduce X

X is odd

Fig. 2. Finite State Machine Core

Each step fulfills a core component of the original
Extended Stein’s Algorithm. ADJUST X modifies the X,
and X, values by the operand by the original Yo and Xo
values, thus ensuring that both are even. This ensures that
when SHIFT X divides all values by 2 via an arithmetic
right shift to preserve sign, all three are even. However, this
approach introduces an additional iteration compared to the
original algorithm as the software can handle the adjustment
within the shift iteration. Once X is no longer even the

reduce state subtracts Y from X, as both are negative the
result is Y is even. This FSM is paired with a matching one
for handling Y, Fig. 3 above.

A key breakthrough in design of the hardware was the
realization that the only time the algorithm needs to
transition from working on X to Y and vice versa is when a
shift operation occurs, as it is the only time in the original
algorithm where P could become larger than Q is when Q is
divided by 2. In the context of our implementation the only
jump from the “X” to “Y” side of the hardware occurs when
going from a Shift to a Reduce State.

A key aspect of the design is the necessity for the next
state to be determined before the end of each clock cycle,
ensuring that the FSM can seamlessly transition between
states without causing delays or errors. Eliminating the need
for any additional states Minimizing the already increased
iterations of Stein’s algorithm wherever possible is critical
to maintaining the algorithms’ performance. Thus, the
algorithm should be able to compute the next step before the
end of the current clock cycle. The controller’s inputs are as
follows:

e CLK: Clock signal for the controller.

e Enable: Enables the state machine to process states

on the rising edge of the clock.

e XY-sign: Input signal indicating the sign of the X

minus Y resultant value.

e YX-sign: Input signal indicating the sign of the Y

minus X resultant value.

e RSI1-obit: Input signal for the RightShiftl resultant

odd bit

e RS2-obit: Input signal for the RightShift] resultant

odd bit

e RS3-obit: Input signal for the RightShift] resultant

XY_sign &&
X Obit &8 ¥ _Obit
XY_sign £& '¥_obit
£6 1X Obit &£ (Xp_Obit
11 Xq obit)

XY_Sign &8 Y _Obit
56 1X.cdd &5 ! (Xp_Obit
Il Xq obit)

1% obit £
1¥_obit £
1¥X_sign &6l
YX_sign
¥X_Sign £& 1X Obit
£& ¥ Obit £5 ! (Xp_Obit
= sl e 11 Xq_obit)
X Obit && Y_Obit
= = YX_Sign £ !¥_Obit
&5 X_Obit &&(Xp Obit
11 Xq obity

IX_Obit &6 'Y_Obit
&&(YX_Sign || ¥X Sign)

XY_sign && X _Obit
&& Y _Obit && (Xp_Obit
|1 Xq obit)

xrsign s&
x omif & v opit W

XY_sign G& X obit
55 X Obit &5 ! (Xp Obit
e 11 Xq obit)
vx_sign e X obit
o 1Y Obit &2 1 (Xp obit
Il Xq obit)

1% _odd
& 1¥_odd

Shrink

¥X_Sign &6 'Y _Obit

&6 X _Obit && (Xp_Obit
11 Xq_ obit)
¥X_Sign &&

X Obit && ¥ _Obit

1X Obit &&
(RS2_obit_IN
I RS2_obit)

1% _Obit £E
(RS2_Obit_IN
|1 RS2_0bit)

odd bit

e Subl-obit: Input signal indicating the first
subtraction operations odd bit.

e Sub2-obit: Input signal indicating the second
subtraction operation odd bit

e Reg-obits: 6-bit input vector (5-0) representing
register odd bits used to track X, Y, and their
coefficients ordered (Y, Yy, Yg, X, Xp, Xq)-

The LOAD state requires the controller to determine if
it should jump straight to DONE, which occurs when both
numbers are equal, whether to SHRINK because both X and
Y are even or determine where in the core FSM it should
continue from. Load is returned to upon enable being set
low. The SHRINK state also must determine where in the
core FSM to jump to whenever X and Y are both no longer
even. SHRINK also highlights the controller’s internal logic
needed to track the number of shift values (K). The
maximum value of K is equal to the unsigned bit size
required to store the N-bit size of the hardware, and thus
Ksi,e = log,(N). Since the selected implementation for this
publication is 64 bits, Kg;,, = log,(64) = 6-bits. When the
state is SHRINK K is incremented and decremented when
the state is INFLATE. The controller therefore maintains a
6-bit register, adder, and subtractor to perform these
calculations.

The Controller knows the GCD is complete when both
XY-Sign and YX-Sign are zero in a REDUCE state,
represented in the FSM as “Complete”. This mirrors the
original algorithm checking if Q = 0 after reducing Q by P.
If K > 0, The controller shifts X and Y by 2 utilizing left
shifts to restore the GCD. Once K = 0, the hardware
proceeds to either of the Done states which dictate whether
X, Xp, Xq0r Y, Y, Yq are the resultant outputs.

(RS2_Obit_IN
|1 RS2_0Obit) && !Completd

1X_obit &&
1 (RS2_Obit_IN
Il RS2_obit)
\H RS2 Obit) && !Complete

! (RS2_obit_IN

Reduce X

Complete £& K=0 e

K=0 £& XY_SIGN_IN

complete
&5 B0
®0
complete.
&5 B0
K-0 && !XY_SIGN_IN

complets £& “‘

X _Obit &5 XY_Sign

1X Obit && XY Sign

Y_obit && XY_Sign

1(RS2_Obit_IN
|| Rs2_obit) && IComplete

Reduce Y

1y bpit e Y_OPit & YX sign

{ (RS2_Obit_IN
Il RS2_obit)

(RS2_Obit_IN
|1 Rs2_Obit) && !Complete

Fig. 3. Finite State Machine

SIMULATION RESULTS

The hardware implementation fulfills the needs of the
described Extended Steins’s FSM. Our hardware was
described in Very High-Speed Integrated Circuit Hardware
Description Language [9] and implemented on a Basys 3
Artix-7 Field Programmable Gate Array (FPGA). The
synthesized hardware requires 1628 Look Up Tables and
535 Flip Flops. Our implementation was wrapped in a 192-
bit shift registers to meet the I/O limitations of the FPGA
device and the resultant minimum clock period was 8ns.
Below Table 1 shows a running example of the
implemented FSM with an initial p and q of 10 and 12
respectively and Fig. 4 demonstrates the resulting waveform
from the hardware simulation. Each iteration of algorithm in
the table directly corresponds with a matching clock on the
waveform. The hardware beings with a shrink to ensure the
values are coprime, mirrored with an inflate to ensure the
final GCD is correct. The resulting waveform demonstrates
the correct execution and coefficients of -1 and 1 and GCD
of 2.

TABLE 1.
HARDWARE EXAMPLE

Step # X Y- Xp Xq Yp Yq Step
1 Load

®|~(o|o]|s|w
p oo |alalalvv]ololald

Shrink
Adjust Y
Shift Y
Reduce X
Adjust X
Shift X
Reduce Y
Shift Y
Reduce Y
Inflate

©

10
1"
12

ololo|=|v|w|w|w|w|o|a [N
N N N BN N N PN Y NN
alafa|alala(v|b]o|olo]|o
olofo|L|b|b|b|b|b|d oo
ololo|a|M|w|w|w|w|o|a|s

Clafa)a]afafa|a]a]a]n

Done

sax '
B evante 3 | T
CURRENTSTATE SM.10AD S C_womm St ¢ Scoariy) swox

NEXT_STATE SLDONEX oo x SComon Sty Svarx Swuer St x

 INPUT_11630) 0

 NPUT 26301 2
weoouteso] o

 COBFFICENT 116301 0 L 5
 COEFFICIENT 216301 0

Fig. 4. Waveform Diagram

Several possibilities for improvement could allow this
hardware design to be further optimized. The current
implementation uses simple ripple carry adders. Substituting
these with faster alternatives, including carry look-ahead
adders, would improve hardware performance.
Alternatively, it could be possible to substitute the two X/Y
subtractors for a single subtractor that performs the relevant
operation with necessary. The key limitation is devising a
more efficient manner for determining when the hardware is
done as it relies on the sign bit for both subtractors.

CONCLUSION

This work presents an easily 64-bit hardware
implementation of the Extended Stein’s Algorithm that

scales to large bit sizes without affecting control logic or
overall hardware architecture. It proves effective for
computing Bézout’s coefficients, leveraging binary shift
operations to improve efficiency over traditional software-
based approaches. By shifting computational complexity
from the Datapath to the control logic, the proposed design
optimizes performance while maintaining a scalable and
practical architecture for cryptographic applications. The
results demonstrate that although Stein’s Algorithm requires
more iterations than Euclid’s Algorithm, its reduced cycle
time enables overall performance gains, particularly in
hardware implementations where division and
multiplication are costly. Improvements can also be made
for applications where the GCD is unnecessary such as RSA
where the GCD is odd, and the input numbers are large
primes. This would allow for the elimination of the
SHRINK and INFLATE states and several components
from the Datapath.

Overall, this work demonstrates the feasibility of using
hardware acceleration for Bézout’s coefficient computation,
balancing efficiency and resource utilization. By leveraging
the Extended Stein’s Algorithm, the implementation
mitigates the performance limitations of traditional
software-based approaches while maintaining a manageable
hardware footprint. This study serves as a foundation for
future research into optimizing GCD-based computations in
cryptographic systems, reinforcing the role of specialized
hardware in secure and efficient key management.

REFERENCES

[1] V. Kapoor, V. S. Abraham, and R. Singh, “Elliptic Curve
Cryptography,” Ubiquity, vol. 2008, no. May, pp. 1-8, May 2008,
doi: https://doi.org/10.1145/1386853.1378356

[2] R.L.Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978, doi:
https://doi.org/10.1145/359340.359342. Available:
http://people.csail.mit.edu/rivest/Rsapaper.pdf.

[3] E. Bézout, “Théorie générale des équations algébriques,” Internet
Archive, 1779. Available: https://archive.org/details/thoriegnra00bz

[4] “Disquisitiones arithmeticae : Gauss, Carl Friedrich, 1777-1855 : Free
Download, Borrow, and Streaming : Internet Archive,” Internet
Archive, 2018. https://archive.org/details/disquisitionesa00gaus.

[5] K. Sreedhar, M. Horowitz, and C. Torng, “Fast Large-Integer
Extended GCD Algorithm and Hardware Design for Verifiable Delay
Functions and Modular Inversion,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 163—187, Aug.
2022, doi: https://doi.org/10.46586/tches.v2022.i4.163-187.
Available: https://eprint.iacr.org/2021/1292.

[6] R.P.Brent, "Twenty years' analysis of the binary Euclidean
algorithm," in Millennial Perspectives in Computer Science:
Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of
Professor Sir Antony Hoare, J. Davies, A. W. Roscoe, and J.
Woodcock, Eds. New York: Palgrave, 2000, pp. 41-53.

[7]1 R.P.Brent, “Analysis of the Binary Euclidean Algorithm,” ACM
SIGSAM Bulletin, vol. 10, no. 2, pp. 6-7, May 1976, doi:
https://doi.org/10.1145/1093397.1093399

[8] J.R. Barkema, “Extending Stein’s GCD Algorithm and a Comparison
to Euclid’s GCD Algorithm,” Studenttheses.uu.nl, Jun. 2019,
Available: https://studenttheses.uu.nl/handle/20.500.12932/33194.

[91 Ryan-B-Massie, “GitHub - Ryan-B-
Massie/ExtendedBinaryGCDHardware,” GitHub, Feb. 12, 2025.
Available: https:/github.com/Ryan-B-
Massie/ExtendedBinaryGCDHardware/tree/main.

